https://www.halvorsen.blog

Read Temperature Data with Lowpass Filter in LabVIEW

Hans-Petter Halvorsen

Contents

- We will use LabVIEW to read Temperature data from TMP36 Temperature Sensor
- We will use the USB-6008 DAQ Device or I/O Module
- The Temperature Data will typically include some Noise
- We will create and apply a Lowpass Filter in order to reduce the Noise from the Temperature signal

Hardware

- DAQ Device (e.g., USB-6008)
- Breadboard

- TMP36 Temperature Sensor
- Wires (Jumper Wires)

Software

- LabVIEW
 - -Graphical Programing Environment
- DAQmx Driver

-Driver used for Communication with external Hardware such as USB-6008

https://www.halvorsen.blog

Reading Temperature Data

Hans-Petter Halvorsen

USB-6008

- USB-6008 is a DAQ Device from NI
- Can be used within LabVIEW
- NI-DAQmx Driver
- It has Analog and Digital Inputs and Outputs

TMP3x Datasheet: TMP3x Datasheet:

This gives:

$$y - 25 = \frac{50 - 25}{1 - 0.75} (x - 0.75)$$

Then we get the following formula:

y = 100x - 50

Convert form Voltage (V) to degrees Celsius From the Datasheet we have:

$$(x_1, y_1) = (0.75V, 25^{\circ}C) (x_2, y_2) = (1V, 50^{\circ}C)$$

There is a linear relationship between Voltage and degrees Celsius: v = ax + b

y care i c

We can find a and b using the following known formula:

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1} (x - x_1)$$

Wiring

Instruments, e.g., USB-6001, USB-6008 or similar. I have used a breadboard for the wiring.

Scaling.vi Block Diagram × **Read Temperature Data** File Edit View Project Operate Tools Window V ♦ ֎ ■ II @ \$\$ +0 = of of • Scaling from Voltage to degrees Celsius Voltage Temperature TMP36.vi Block Diagram Temperature [C] 1.23 File Edit View Project Operate Tools Window Help D 1.23 수 🐼 🦲 🛯 💡 👷 🏎 🗃 🗗 15pt Application Font 🔻 🏪 🖬 🖏 While Loop Temperature [C] 1.23 Waveform Chart Scaling.vi Convert from Dynamic Data **DAQ** Assistant Å. v -> ----- X di data degC Samling Time [s] 1.23 Waveform Chart Stop Button 78 Wait (ms) XScale.Multiplier 0K 0 XScale.Offset æ 1000 0 History 60 Scale, Maximum i

Read Temperature Data

Waysform	Chart														ĺ	24.87	ture [C	Tem	nperatu	re [C]	\sim	1
26 26 26 26 26 26 26 26 25 25 25 25 25 25 25 25 25 25 25 25 25	7 8 6 4 2 2 6 6 4 4 2 5 5 8 8 6 6 4 4 2 5 5 8 8 6 6 7 8 8 7 6 7 8 8 7 8 8 8 6 6 7 8 8 8 8		V					 	V										Ń			
2	0 2	4	6 8	10	12 14	16 1	8 20	22	24 2	6 28 T	30 me [s]	2 34	36 38	3 40	42 4	4 46	48 5	0 52	54	56 58	60	

>

<

Discussions

- We see that the signal is quite noisy
- We want to use a Filter in order to remove or reduce the noise from the signal

https://www.halvorsen.blog

Lowpass Filter

Hans-Petter Halvorsen

Lowpass Filter

The Transfer Function for a Low-pass filter is given by:

$$H(s) = \frac{y_f(s)}{y(s)} = \frac{1}{T_f s + 1}$$

Where:

y is the Signal from the DAQ device (that contains noise) y_f is the Filtered Signal T_f is the Filter Time Constant

Why Lowpass Filter?

- In Measurement systems and Control Systems we typically need to deal with noise
- Noise is something we typically don't want
- Lowpass Filters are used to remove noise from the measured signals
- Noise is high-frequency signals
- A Lowpass Filter make sure the low frequencies pass (the measurements) and removes the high frequencies (the noise)

Lowpass Filter

Lowpass Filter

Below we see an Ideal Lowpass Filter:

From Transfer Function to Differential Equation

A Low-pass Filter has the following Transfer Function:

$$H(s) = \frac{y_f(s)}{y(s)} = \frac{1}{T_f s + 1}$$

We get:

$$y_f(s)[T_f s + 1] = y(s)$$

$$T_f y_f(s)s + y_f = y(s)$$

Finally, we get the following **Differential Equation**:

 $T_f \dot{y}_f + y_f = y$

We apply Euler on the Differential Equation in order to find the Discrete Differential equation. See next Page

We can find the Differential Equation for this filter using Inverse Laplace

Discretization of Lowpass Filter

We have the following Differential Equation:

 $T_f \dot{y}_f + y_f = y$

We use Euler Backward method: $\dot{x} \approx \frac{x(k) - x(k-1)}{T_s}$

Then we get:

$$T_f \, \frac{y_f(k) - y_f(k-1)}{T_s} + y_f(k) = y(k)$$

This gives:
$$y_f(k) = \frac{T_f}{T_f + T_s} y_f(k-1) + \frac{T_s}{T_f + T_s} y(k)$$

We define:

$$\frac{T_s}{T_f + T_s} \equiv a$$

Finally, we get the following discrete version of the Lowpass Filter:

 $y_f(k) = (1-a)y_f(k-1) + ay(k)$

This equation can easily be implemented in LabVIEW or another programming language

Discrete Lowpass Filter

Discrete Lowpass Filter:

 $y_f(k) = (1 - a)y_f(k - 1) + ay(k)$

Where:

$$\frac{T_s}{T_f + T_s} \equiv a$$

y(k) is the current Signal from the DAQ device (that contains noise) $y_f(k)$ is the Filtered Signal $y_f(k-1)$ is previous filtered signal T_f is the Filter Time Constant T_s is the Sampling Time

Lowpass Filter in LabVIEW

We test the Filter

>

We test the Filter - LabVIEW

> .:

https://www.halvorsen.blog

Reading Temperature Data with Lowpass Filter

Hans-Petter Halvorsen

Temperature Data with Filter

Temperature Data with Filter

alt view Project	Operate Tools Windo	w Help ₽_w arrw #	Hi- (1)-			el Cons		0.9	
	Spt Application Pont	*********			_	• Sear	cn	~ *	<u>г</u> раз с
					Temperature [C]	Temperature [C] Filtered	Unfiltered	\sim	
Waveform Chart					25.89	25.85	Filtered		
27-									ĩ
26.8-									
26.6-									
26.4-									
26.2									
26-									
0.25.8-		•••	1 1				****		
≝ 25.6-				AL		A A A A A A A A A A A A A A A A A A A			
25.4-									
E 25.2-									
25-				V V					
24.8-		+++		1 1	→ →↓ →↓				
24.6									
24.4-									
24.2									
24-									
0 2	4 6 8 10 12	14 16 18	20 22 24	26 28 30 32	34 36 38 40 4	2 44 46 48 50 52	54 56 5	8 60	
				Time [s]					
									_
Samling Time [s]	Sampling Frequency [z] Tf [s]	_					Stop	
		(A) -							1990 - C

Summary

- We see that the signal is quite noisy
- We want to use a Filter in order to remove or reduce the noise from the signal
- We see from the results that by implementing and applying a Lowpass Filter we get a much Smoother Signal
- If we use a Noisy Signal as an input to a PID Controller it will affect the stability of the Control System

Hans-Petter Halvorsen

University of South-Eastern Norway

www.usn.no

E-mail: hans.p.halvorsen@usn.no

Web: https://www.halvorsen.blog

