
Hans-Petter Halvorsen

https://www.halvorsen.blog

Read Temperature Data with
Lowpass Filter in LabVIEW

• We will use LabVIEW to read Temperature
data from TMP36 Temperature Sensor

• We will use the USB-6008 DAQ Device or I/O
Module

• The Temperature Data will typically include
some Noise

• We will create and apply a Lowpass Filter in
order to reduce the Noise from the
Temperature signal

Contents

• DAQ Device (e.g., USB-6008)
• Breadboard
• TMP36 Temperature Sensor
• Wires (Jumper Wires)

Hardware

• LabVIEW
–Graphical Programing Environment

• DAQmx Driver
–Driver used for Communication with

external Hardware such as USB-6008

Software

Hans-Petter Halvorsen

https://www.halvorsen.blog

Reading Temperature Data

• USB-6008 is a DAQ Device from NI
• Can be used within LabVIEW
• NI-DAQmx Driver
• It has Analog and Digital

Inputs and Outputs

USB-6008

TMP36 - Linear Scaling
Convert form Voltage (V) to degrees Celsius
From the Datasheet we have:

(𝑥!, 𝑦!) = (0.75𝑉, 25°𝐶)
(𝑥", 𝑦") = (1𝑉, 50°𝐶)

There is a linear relationship between
Voltage and degrees Celsius:

𝑦 = 𝑎𝑥 + 𝑏

We can find a and b using the following
known formula:

𝑦 − 𝑦! =
𝑦" − 𝑦!
𝑥" − 𝑥!

(𝑥 − 𝑥!)

This gives:

𝑦 − 25 =
50 − 25
1 − 0.75 (𝑥 − 0.75)

Then we get the following formula:
𝑦 = 100𝑥 − 50

TMP3x Datasheet:

Wiring

5V

GND

AI0USB-6008
Breadboard

TMP36

Wiring

We connect the TMP36 to LabVIEW using a USB DAQ Device from National
Instruments, e.g., USB-6001, USB-6008 or similar. I have used a breadboard for
the wiring.

TMP
36

5V
AI+

GND

Read Temperature Data

Read Temperature Data

Discussions
• We see that the signal is quite noisy
• We want to use a Filter in order to remove or

reduce the noise from the signal

Hans-Petter Halvorsen

https://www.halvorsen.blog

Lowpass Filter

Lowpass Filter
The Transfer Function for a Low-pass filter is given by:

𝐻 𝑠 =
𝑦4(𝑠)
𝑦(𝑠)

=
1

𝑇4𝑠 + 1

Why Lowpass Filter?
• In Measurement systems and Control Systems we typically need to deal with noise
• Noise is something we typically don’t want
• Lowpass Filters are used to remove noise from the measured signals
• Noise is high-frequency signals
• A Lowpass Filter make sure the low frequencies pass (the measurements) and removes

the high frequencies (the noise)

Where:
𝑦 is the Signal from the DAQ device
(that contains noise)
𝑦# is the Filtered Signal
𝑇# is the Filter Time Constant

Lowpass Filter

FilterSignal with Noise Signal without Noise
𝑦!𝑦

Output SignalInput Signal

Lowpass Filter

1

0
Frequency

Amplitude Gain

𝜔$

Where 𝜔$ is the Bandwidth
(or the cut-off frequency) of
the Lowpass Filter

Below we see an Ideal Lowpass Filter:

𝐻 𝑠 =
1

𝑇!𝑠 + 1
=

1
1
𝜔"

𝑠 + 1

Bandwidth

0 𝑑𝐵

High frequencies (above 𝜔$) are removed (or reduced)

From Transfer Function to Differential Equation

𝐻 𝑠 =
𝑦#(𝑠)
𝑦(𝑠)

=
1

𝑇#𝑠 + 1

A Low-pass Filter has the following Transfer Function:

We can find the Differential Equation
for this filter using Inverse Laplace

We get:

𝑦# 𝑠 𝑇#𝑠 + 1 = 𝑦(𝑠)

𝑇#𝑦# 𝑠 𝑠 + 𝑦# = 𝑦 𝑠

Finally, we get the following Differential Equation:

𝑇#�̇�# + 𝑦# = 𝑦

We apply Euler on the Differential
Equation in order to find the Discrete
Differential equation. See next Page

Discretization of Lowpass Filter
We have the following Differential Equation:

𝑇#�̇�# + 𝑦# = 𝑦

We use Euler Backward method: �̇� ≈ % & '% &'!
(!

Then we get:

𝑇#
𝑦# 𝑘 − 𝑦# 𝑘 − 1

𝑇)
+ 𝑦# 𝑘 = 𝑦 𝑘

This gives: 𝑦# 𝑘 = ("
("*(!

𝑦# 𝑘 − 1 + (!
("*(!

𝑦 𝑘

We define:
𝑇)

𝑇# + 𝑇)
≡ 𝑎

Finally, we get the following discrete
version of the Lowpass Filter:

𝑦! 𝑘 = 1 − 𝑎 𝑦! 𝑘 − 1 + 𝑎𝑦 𝑘

This equation can easily be
implemented in LabVIEW or another
programming language

Discrete Lowpass Filter

Where: 𝑇!
𝑇" + 𝑇!

≡ 𝑎

Discrete Lowpass Filter:

𝑦! 𝑘 = 1 − 𝑎 𝑦! 𝑘 − 1 + 𝑎𝑦 𝑘

𝑦(𝑘) is the current Signal from the DAQ
device (that contains noise)
𝑦#(𝑘) is the Filtered Signal
𝑦#(𝑘 − 1) is previous filtered signal
𝑇# is the Filter Time Constant
𝑇) is the Sampling Time

Lowpass Filter in LabVIEW
𝑦! 𝑘 = 1 − 𝑎 𝑦! 𝑘 − 1 + 𝑎𝑦 𝑘

Initial Value

Formula Node
has been used

Lowpass Filter in LabVIEW

Here is the same Filter
implemented with

“pure” LabVIEW code

𝑦! 𝑘 = 1 − 𝑎 𝑦! 𝑘 − 1 + 𝑎𝑦 𝑘

We test the Filter

We test the Filter - LabVIEW

Hans-Petter Halvorsen

https://www.halvorsen.blog

Reading Temperature Data
with Lowpass Filter

Temperature Data with Filter

Temperature Data with Filter

Summary
• We see that the signal is quite noisy
• We want to use a Filter in order to remove or

reduce the noise from the signal
• We see from the results that by implementing and

applying a Lowpass Filter we get a much
Smoother Signal

• If we use a Noisy Signal as an input to a PID
Controller it will affect the stability of the Control
System

Hans-Petter Halvorsen

University of South-Eastern Norway
www.usn.no

E-mail: hans.p.halvorsen@usn.no
Web: https://www.halvorsen.blog

http://www.usn.no/
mailto:hans.p.halvorsen@usn.no
https://www.halvorsen.blog/

